Solid-state dynamic nuclear polarization at 263 GHz: spectrometer design and experimental results.

نویسندگان

  • Melanie Rosay
  • Leo Tometich
  • Shane Pawsey
  • Reto Bader
  • Robert Schauwecker
  • Monica Blank
  • Philipp M Borchard
  • Stephen R Cauffman
  • Kevin L Felch
  • Ralph T Weber
  • Richard J Temkin
  • Robert G Griffin
  • Werner E Maas
چکیده

Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz (1)H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water-glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Continuously Tunable 250 GHz Gyrotron with a Double Disk Window for DNP-NMR Spectroscopy.

In this paper, we describe the design and experimental results from the rebuild of a 250 GHz gyrotron used for Dynamic Nuclear Polarization enhanced Nuclear Magnetic Resonance spectroscopy on a 380 MHz spectrometer. Tuning bandwidth of approximately 2 GHz is easily achieved at a fixed magnetic field of 9.24 T and a beam current of 95 mA producing an average output power of >10 W over the entire...

متن کامل

Solution-state dynamic nuclear polarization at high magnetic field.

The goal of dynamic nuclear polarization (DNP) is to enhance NMR signals by transferring electron spin polarization to the nuclei. Although mechanisms such as the solid effect and thermal mixing can be used for DNP in the solid state, currently, the only practical mechanism in solutions is the Overhauser effect (OE), which usually arises due to dipolar relaxation between electrons and the nucle...

متن کامل

A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies.

We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz ((1)H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE(011) resonator acts as both an NMR coil and microwave resonator, and a double balanced ((1)H,...

متن کامل

A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization.

We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the ne...

متن کامل

Investigation of DNP Mechanisms: The Solid Effect by

Dynamic Nuclear Polarization (DNP) enhances signal to noise in NMR experiments, by transferring the large electron Boltzmann polarization to nuclear polarization, via application of pulsed or continuous-wave microwave irradiation. This results in increases in NMR sensitivity of 2-3 orders of magnitude. DNP greatly reduces experimental times and makes some experiments possible that are otherwise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 12 22  شماره 

صفحات  -

تاریخ انتشار 2010